Supra- and infratentorial brain tumors from childhood to maternity

Thierry A.G.M. Huisman, MD, FICIS, EQNR

Professor of Radiology, Pediatrics and Neurology Director of Pediatric Radiology and Pediatric Neuroradiology Johns Hopkins Hospital

What to expect?

I am going to show you the characteristic imaging findings of following tumors:

- Pilomyxoid astrocytoma Juvenile pilocytic astrocytoma
- Astroblas
- Primitive Neuroectodermal Tumor (PNET) Atypical Teratoid-Rhabdoid Tumor (ATRT)
- Ganglioglioma Desmoplastic infantile ganglioglioma Oligodendroglioma
- Ependymoma

- Ependymoblastoma
- Pleomorphic xanthoastrocytoma (PXA)
- Hemangioblastoma
- Glioblastoma multiforme (GBM)
- Choroid plexus carcinoma
- Pineoblastoma
- Choroid Plexus papilloma Subependymal Giant cell astrocytoma

What to expect?

Please listen carefully and do not distract or interrupt me,

otherwise I cannot get through my 344 characteristic slides in the coming 25 min

The really important questions:

- Is there a tumor?
- Is the lesion benign or malignant?
- Narrow differential diagnosis

Additional important questions:

- · Localize and characterize the lesion
- · Identify threatened structures
- · Identify life threatening complications (e.g. herniation)
- · Look for additional lesions outside of primary field of view

Give clinician the most reliable information for their decision making

"Children are not small adults"

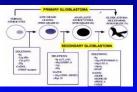
- · What is different from adults
 - Clinical symptoms
 - Type and incidence of tumor
 - Imaging characteristica
 - Treatment
 - Prognosis
 - Neuronal/functional plasticity
 - ,.....

Type and incidence of tumor

Supratentorial

- 30% Astrocytoma
- 15% Craniopharyngeoma
- 15% Optic pathway glioma
 - 60%

© TAGM

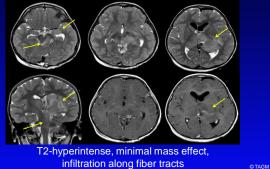

Supratentorial astrocytoma

- 30% of all supratentorial tumors in children
- M=F, all age groups are affected, peak at 7-8Y
- Symptoms depend on location
- Clinics: Seizures, focal neurological defect, signs related to ICP ↑

Supratentorial astrocytoma

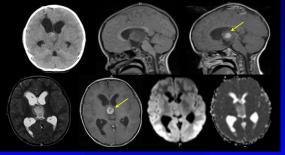
- Most are low grade, GBM does occur
- (J-)PA are less frequent supratentorial than infratentorial
- Spontaneous malignant degeneration may occur

Supratentorial astrocytoma


• Variable appearance on imaging

Often large at initial presentationSymptoms depend on location

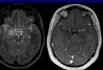
- Solid, solid with necrosis, cystic with mural nodule
- May occur at any location
- Somewhat more frequent in deep location: thalamus, basal ganglia


Supratentorial astrocytoma

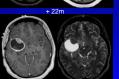
Supratentorial astrocytoma

Solid, cystic, minimal enhancement and mass effect

Supratentorial astrocytoma

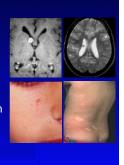


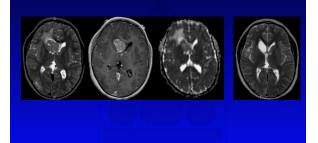
Partial, nodular enhancement


© TAGI

Supratentorial astrocytoma

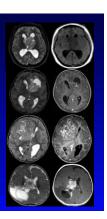
- Glioblastoma multiforme (grade IV)
- Similar to adults
- Rare in children
- May mimic abscess





Giant cell astrocytoma

- Near foramen of Monro
- Benign lesion
- 5-15% of TSC patients
- M=F, any age, peak: 5-10Y
- Clinics: Hydrocephalus
- Rarely malignant degeneration
- Arise from subependymal hamartoma?



Giant cell astrocytoma

Differential diagnosis

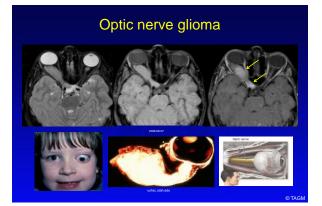
- Many more tumors are known:
 Ependymoma
 - PNET
 - ATRT
 - Choroid plexus papilloma
 - May look similar to high grade astrocytomas, biopsy may be necessary

Sellar and suprasellar tumors

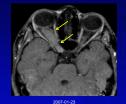
- Optic pathway glioma/astrocytomas
- Optic Nerve gliomas

Craniopharyngeoma

- Hypothalamic hamartoma
- Langerhans' Cell Histiocytosis
- Pituitary tumors
- Suprasellar germ cell tumors



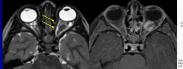
© TAGN


Optic pathway glioma Optic nerve glioma

- Optic nerve glioma: Starts in intraorbital segment of optic nerve; slow growth; JPA-like histology
- Hypothalamic/chiasmatic tumor: Starts in hypothalamus; more aggressive/invasive, histology similar to hemispheric astrocytomas
- Clinics: Diminished vision, pituitary dysfunction, hydrocephalus, diencephalic syndrome
- 20-50% have NF1

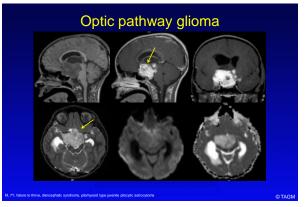
©TAG

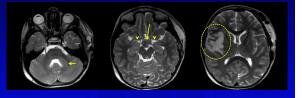
Optic nerve glioma



2008-08-07

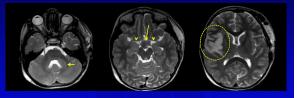
- Frequently stable on follow up
- Look for other (NF1) lesions (UBO, JPA,...)


Optic nerve glioma



- Subarachnoid optic nerve sheath surrounds glioma
- Differentiation from optic nerve sheath meningeoma (NF2, MISME)

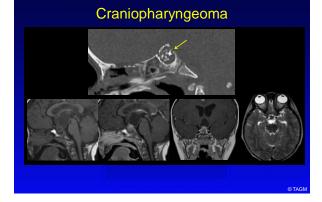
© TAG

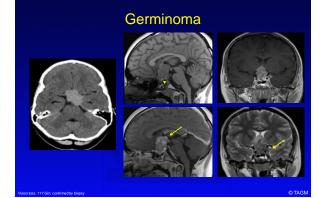

Always look beyond the most obvious findings

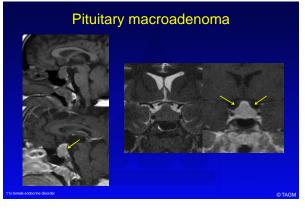
Glioma of the optic chiasm, UBO's, MCA infarction

© TAGM

Always look beyond the most obvious findings

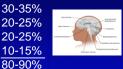



- Glioma of the optic chiasm, UBO's, MCA infarction, Moya Moya, post ECA-MCA anastomosis in NF1 patient


Craniopharyngeoma

- Along hypothalamic-pituitary axis
- 15% of all supratentorial tumors
- M>F, peak between 10-14 years
- Originate from remnants of pluripotents cells
- Clinics: Visual field defects, pituitary or hypothalamic dysfunction, hydrocephalus
- Imaging: Solid w/wo cysts, calcifications, vary greatly in size
- May infiltrate adjacent brain

Hypothalamic hamartoma


- Tuber cinereum hamartoma
- Rare congenital malformations
- Normal neuronal tissue
- In region of mamillary bodies/tuber cinereum
- · Precocious puberty, gelastic seizures

© TAG

Infratentorial tumors in children

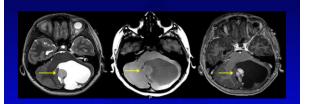
- Take advantage of statistics
- Cerebellar astrocytoma
 Medulloblastoma
 Brainstem glioma
 Ependymoma
 Total

- Meningiomas, schwannomas, metastasis are rare in children!!!
- ➤ "Prognosticators"

© TAGN

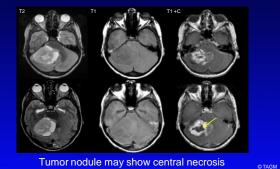
Cerebellar astrocytoma

- Most frequently encountered posterior fossa tumor (30-35%)
- Peak incidence 5-13 years
- 🛉 🛉 1:1.45
- Low grade (75-80%), anaplastic (15-25%)
- Usually benign course, slow growth, expansive
- Located within cerebellar hemispheres or vermis
- Compression of IV ventricle ~> hydrocephalus
- Headache, nausea, vomiting, ataxia, gait disturbance



Cerebellar astrocytoma

- Pilocytic astrocytoma (WHO 1):
 - Usually macrocystic with solid tumor nodule
 - "Hairy" tumor
 - Leptomeningeal metastases rare on initial presentation (5%)
 - Good long term prognosis if treated (90%,10y)
- Anaplastic astrocytoma (WHO III-IV)
 - Usually in older children
 - More solid, small cells
 - More aggressive/infiltrative, poor prognosis
 - More frequent leptomeningeal metastases

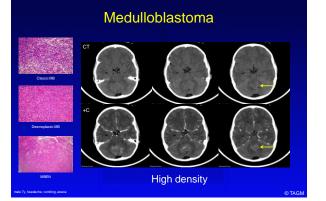

Cerebellar pilocytic astrocytoma

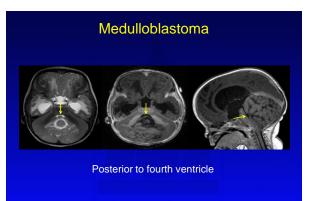

Tumor nodule enhances, cyst does not enhance

© TAG

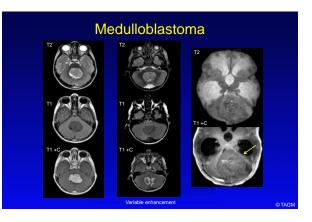
Cerebellar pilocytic astrocytoma

Cerebellar anaplastic astrocytoma


leptomeningeal and local dissemination


Medulloblastoma

- 2nd/3rd most frequent tumor, 20-25%
- First decade, peak at 7yrs
- 🛉 🛉 1:3
- 75-90% in cerebellar vermis
- 10-15% in cerebellar hemispheres: lateral medulloblastomas (older children)
- IV ventricle compression with obstructive hydrocephalus
- Overall 5 year survival 60%, depending on histology and risk factors higher survival rates (90%)



Medulloblastoma

CSF-metastases in 30-50% of children on initial presentation

Brainstem glioma

- 2nd/3rd most frequent tumor, 20-25%
- First decade, peak at 7-9yrs
- 🛉 🛉 1:1

Many classification systems

- Most frequently according to primary location & neuroimaging characteristic
 - Diffuse intrinsic brainstem glioma (80%)
 - Posterior exophytic glioma of
 - cervicomedullary junction (15%)Focal tectal glioma (5%)

© TAGI

Brainstem glioma

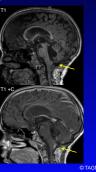
- Depending on localization, prognosis and treatment vary significantly
 - Tectal glioma excellent prognosis compared to diffuse intrinsic brainstem glioma
 - Exophytic glioma may be operated, diffuse brainstem glioma cannot be operated
- Clinical presentation depends on primary location and involved neurofunctional structures

Diffuse intrinsic brainstem glioma

- Most frequently centered within pons
- Involve > 50% of cross-sectional area
- Triad: ataxia, long tract signs, multiple cranial nerve deficits
- Mood change and irritability
- Fibrillary astrocytoma WHO III-IV
- Poor prognosis, most children die < 2 yrs
- No effective treatment
- Radiotherapy may relieve symptoms temporarily
- Neuroimaging is specific, no biopsy necessary

<image>

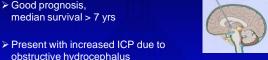
Diffuse intrinsic brainstem glioma


Variable enhancement on follow up, dedifferentiation (WHO III ~> IV)

Posterior exophytic glioma

- > Located at cervicomedullary junction
- > More favourable prognosis, median survival > 5yrs
- > Most frequently, pilocytic astrocytoma
- ➢ Extend into IV ventricle
- > Almost no infiltrative components
- > Long history of non-specific headache and vomiting. Lower cranial nerve deficits, impaired speech and swollowing. Torticollis due to tonsillar herniation
- > At least partial surgical resection is possible

Posterior exophytic glioma



Focal tectal glioma

- > Well demarcated low grade glioma
- ➤ Tectal plate
- > Good prognosis, median survival > 7 yrs

obstructive hydrocephalus

- > Internuclear ophtalmoplegia, Parinaud's syndrome
- > Hydrocephalus usually treated with 3rd ventriculostomy

Focal tectal glioma

Treatment: 3rd Ventriculostomy

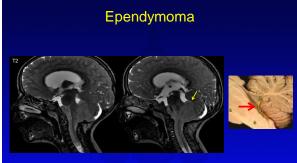
Focal tectal glioma

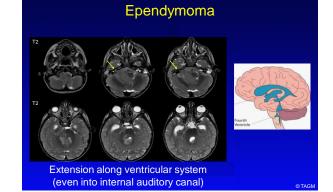
Ependymoma

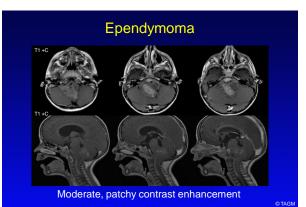
- 4th most common posterior fossa tumor (10-15%)
- Peak incidence 3-5 yrs, up to 18 yrs.
- 1:1.5 •
- · Arise from ependymal lining of IV ventricle (esp. velum medullare posterior)
- Typically respect ventricular system
- Tumor extension along ventricles and their outlets (Magendie/Luschka)
- Present with signs of increased intracranial pressure (obstructive hydrocephalus)
- Ataxia and cranial nerve palsy

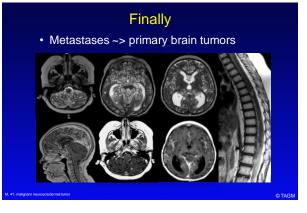
Ependymoma

- > CSF-seeding to spinal canal may occur
- If CSF-seeding is seen, anaplastic ependymoma should be suspected
- High cellularity ~> hyperdense on CT




© TAG


Ependymoma



Epicenter in fourth ventricle

Summary

- Is it really a tumor?
- What is the most likely diagnosis?
- Is surgical resection an option?
- Use your statistics
- Be prepared for the unexpected
- Consider non-neoplastic etiologies
- Do not forget the spine
- Get the best anatomical and functional image quality

© TAGM