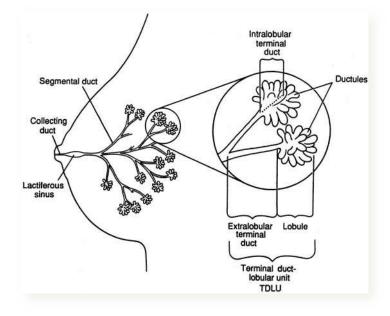
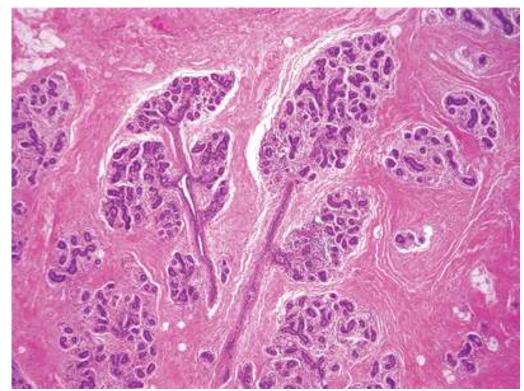
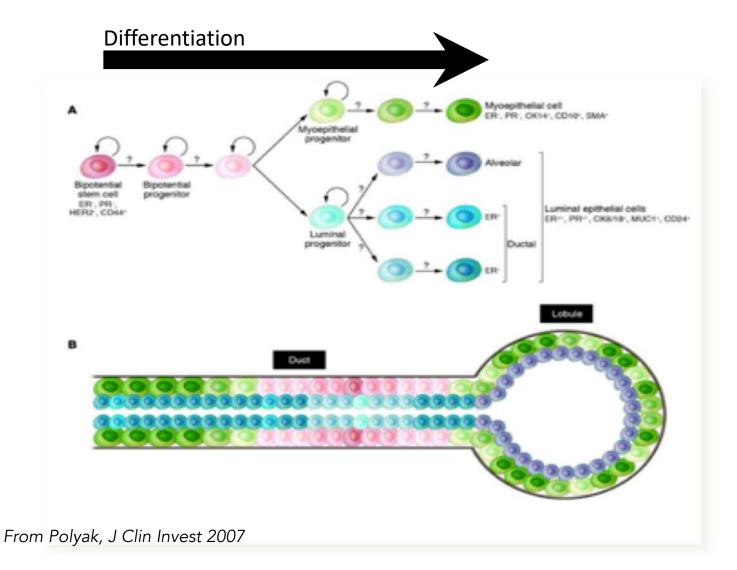

Brystkreft – en sykdom med ulike ansikt



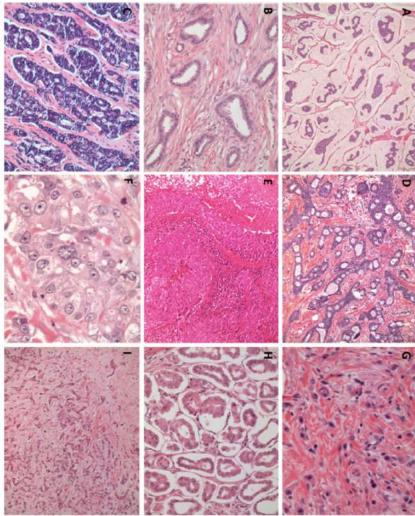

Perou

Hege E. G. Russnes, MD, PhD Dept. of Pathology and Dept of Cancer Genetics, Institute for Cancer Research Oslo University Hospital


The breast

- Luminal epitelial cells
 - Myoepitelial/basal cells

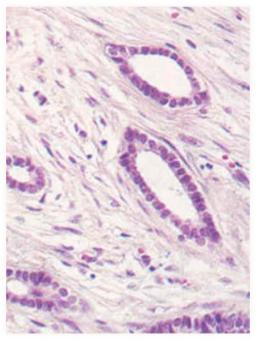
An assumed hierarchical relationship between the cell types



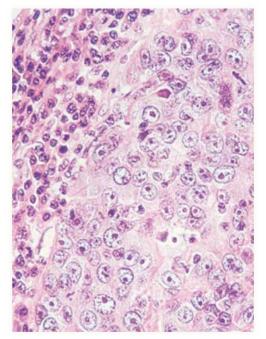
Morphology based classification

- Invasive carcinomas of no special type, NST (previously known as "ductal") – a wide specter
- Special type carcinomas
- Mixed carcinomas

Classification by morphology


WHO Classification of Tumours of the Breast Bort & Lankari, Jac O. Kim, Maari J. Scholl, Page Hoan Tan, Mark J. versin Vyun-

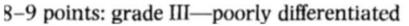
Dieci, The Oncologist 2014

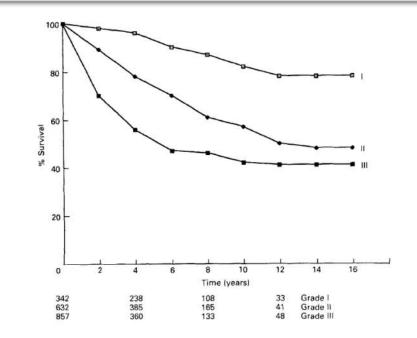

Morphology = phenotype!

"A phenotype is the ensemble of observable characteristics displayed by an organism"

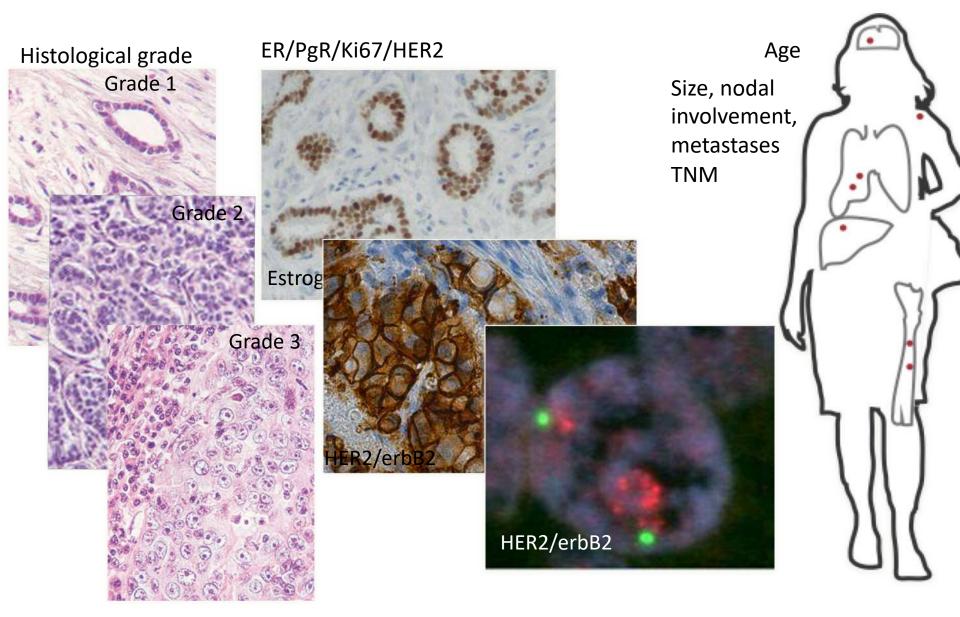
Indolent behavior:

Aggressive behavior:




Histological grade

Feature	Score
Tubule formation	
Majority of tumour $(>75\%)$	1
Moderate degree (10-75%)	2
Little or none (<10%)	3
Nuclear pleomorphism	
Small, regular uniform cells	1
Moderate increase in size and variability	2
Marked variation	3
Mitotic counts	
Dependent on microscope field area	
(see Table 2)	1-3


Elston and Ellis, Histopathology, 1991

- 3-5 points: grade I —well-differentiated
- 6-7 points: grade II —moderately differentiated

Grouping of breast cancer - 2020

St. Gallen consensus meeting 2015

Table 2. Treatment-oriented classification of subgrou

Clinical grouping

Triple-negative

Hormone receptor-negative and HER2-positive

Hormone receptor-positive and HER2-positive

Hormone receptor-positive and HER2-negative luminal disease as a spectrum:

High receptor, low proliferation, low tumor burden (luminal A-like)

Intermediate

Low receptor, high proliferation, high tumor burden (luminal B-like)

- TNBC
- ER-/HER2+
- ER+/HER2+
- ER+/HER2-
 - Low proliferation
 - Intermediate
 proliferation
 - High proliferation

Revolution in technology reveals unknown biology

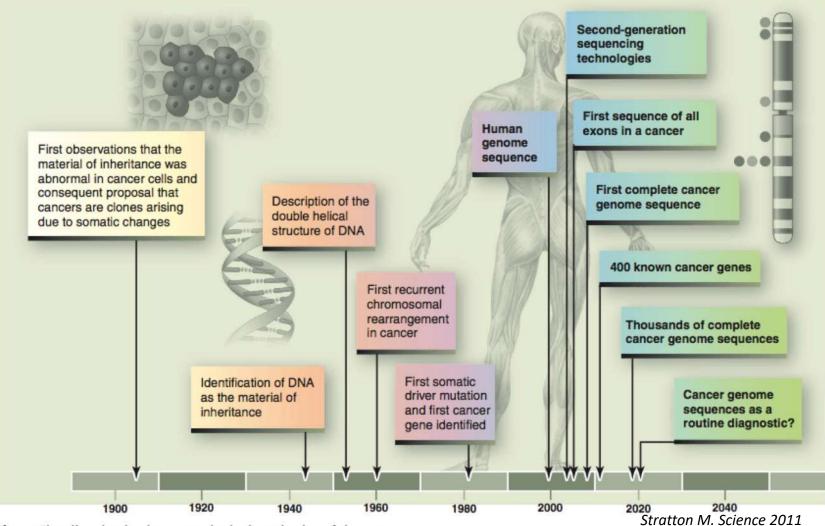


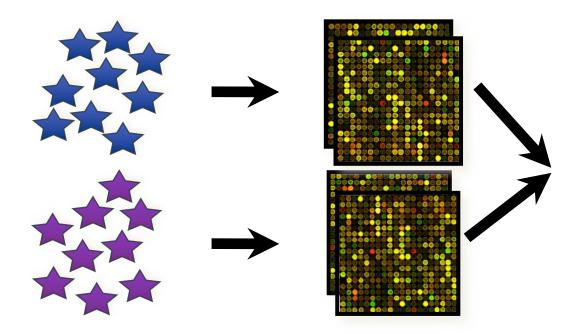
Fig. 1. Time line showing key events in the investigation of the cancer genome.

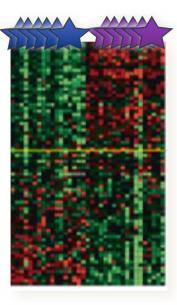
Molecular based classification

- Biomarkers/signatures for treatment prediction?
- Biomarkers/signatures recognizing biological distinct traits?
- Genomic transcriptomic metabolomic proteomic features?
- Integrated approaches?
- Are they recapitulating already established classes...?
- What is the clinical implication?
- And are the designated class the same throughout the entire evolution of given cancer?

Molecular based classification

- Biomarkers/signatures for treatment prediction?
- Biomarkers/signatures recognizing biological distinct traits?
- Genomic transcriptomic metabolomic proteomic features?
- Integrated approaches?
- Are they recapitulating already established classes...?
- What is the clinical implication?
- And are the designated class the same throughout the entire evolution of a given tumor?

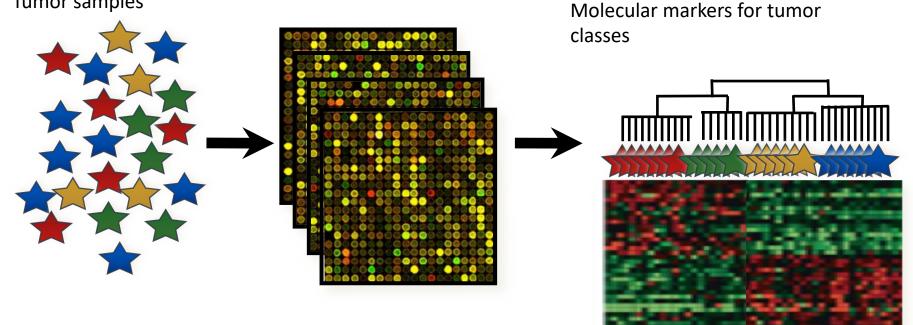

Identification of biomarker/signatures for treatment prediction


Patient samples with **same treatment**, comparison of findings in responders vs. non-responders

Supervised analyses

Selected tumor samples

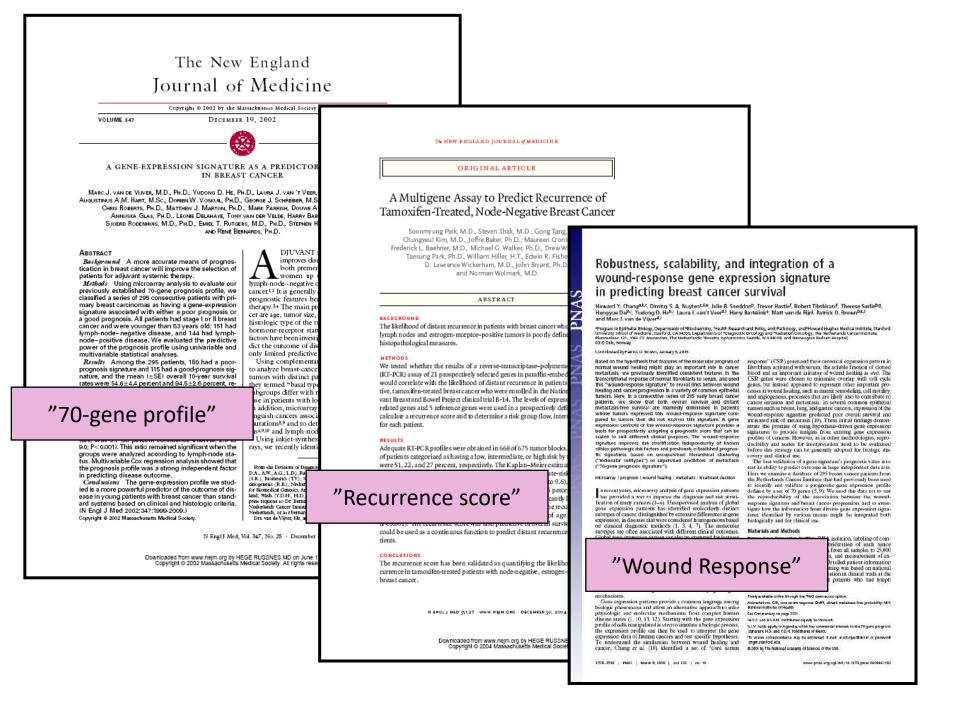
Molecular markers with predictive or prognostic potential



Identification of biomarker/signatures recognizing biological distinct traits

Patient samples regardless of treatment type, comparison of findings across all individual samples Unsupervised analyses

Tumor samples



Treatment prediction

regimens

Class identification

Needs validation in clinical Needs validation in clinical prospective trial prospective trial Important for treatment Important for treatment stratification stratification Often restricted to a specific Often restricted to a specific technology and specific technology and specific algorithms algorithms Only valid for a given treatment Independent of treatment regimen and a selected patient regimen, but needs to enter into "treatment prediction" trials group Limited usefulness for Aims at identification of novel identification of novel treatment treatment regimens

Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications

Therese Sorlie^{Ab}, Charles M. Perou^{Ad}, Robert Tibshirani^a, Turid Aas⁴, Stephanie Geisler³, Hilde Johnsen^b, Trevor Hastie^e, Michael B. Eisen^b, Matt van de Rijn¹, Stefanie S. Jeffreyl, Thor Thorsen^k, Hanne Quist⁴, John C. Matese^c, Patrick O. Brown^m, David Botstein^c, Per Eystein Lonning⁹, and Anne-Lise Borresen-Dale^{b.n}

Departments of Picanetics and Isugary, The Norwegian Radium Hospital, Montoballo, N-0310 Ocido, Norway; "Department of Genetics and Lineberger Comprehensive Cancer Context: University of North Carolina, Chapal Hill, No. 2759; Departments of Health Research and Policy and Statistics, "Genetics, Pathology, Isugary, and "Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 24055; Departments of SMedicine Scatton of Oncology), Strugery, and "Biochemical Endocrinology, Haukeland University Hospital, N-S521 Bergen, Norway; and "Nith Sdences Christion, Lawrence Criando Berkeley National Laboratories, and Department of Molecular and Cellular Biology, University of California, Berkeley, CA 34720

Contributed by David Botstein, July 17, 2001

"Intrinsic classification"

this study was to classify breast carcinomas based gene expression patterns derived from cDNA to correlate tumor characteristics to clinical out-85 cDNA microarray experiments representing 78 broadenomas, and four normal breast tissues were erarchical dustering. As reported previously, the cancers could be classified into a basal epithelial-like group, an ERBB2-overexpressing group and a normal breast-like group based on variations in gene expression. A novel finding was that the previously characterized luminal epithelial/estrogen receptorpositive group could be divided into at least two subgroups, each with a distinctive expression profile. These subtypes proved to be reasonably robust by clustering using two different gene sets: first, a set of 456 cDNA clones previously selected to reflect intrinsic properties of the tumors and, second, a gene set that highly correlated with patient outcome. Survival analyses on a subcohort of patients with locally advanced breast cancer uniformly treated In a prospective study showed significantly different outcomes for the patients belonging to the various groups, including a poor prognosis for the basal-like subtype and a significant difference in outcome for the two estrogen receptor-positive groups.

The biology of breast cancer remains poorly understood. expression of steroid and growth factor receptors (3, 4), estrogen-inducible genes like cathepsin D (5), protooncogenes like *ERBB2* (6) and mutations in the *TPS3* gene (7, 8) all have been correlated to prognosis, knowledge about individual prognostic factors provides limited information about the biology of the disease. Thus, because of their internal correlations in multivariate analysis, the prognostic value of many of these parameters fades away (9, 10).

The cellular and molecular heterogeneity of breast tumors and

559 clones representing 494 unique genes

improved taxonomy of cancer (11-14).

Recently, we reported that variations in gene expression patterns in 40 grossly dissected human breast tumors analyzed by cDNA microarrays and hierarchical clustering provide a distinctive "molecular portrait" of each tumor, and that the tumors could be classified into subtypes based solely on differences in these patterns (14). The present work refines our previous classifications by analyzing a larger number of tumors and explores the clinical value of the subtypes by searching for

www.pnas.org/cgi/doi/10.1073/pnas.191367098

correlations between gene expression patterns and clinically relevant parameters. We found that classification of tumors based on gene expression patterns can be used as a prognostic marker with respect to overall and relapse-free survival in a subset of patients that had received uniform therapy. One finding was the separation of estrogen receptor (ER)-positive tumors into at least two distinctive groups with characteristic gene expression profiles and different prognosis.

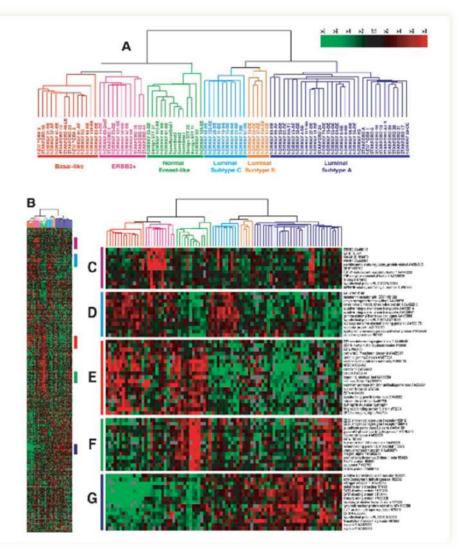
Materials and Methods

Patients and Tumor Specimens. A total of 78 breast carcinomas (71 ductal, five lobular, and two ductal carcinomas in situ obtained from 77 different individuals; two independent tumors from one individual diagnosed at different times) and three fibroadenomas were analyzed in this study. These include 40 tumors that were previously analyzed and described (14). Four normal breast tissue samples from different individuals also were included, three of which were pooled normal breast samples from multiple individuals (CLONTECH). In summary, 85 tissue samples representing 84 individuals were analyzed. Tissue samples were snap-frozen in liquid N2 and stored at -170°C or -80°C. All tumor specimens analyzed contained more than 50% tumor cells. Fifty-one of the patients were part of a prospective study on locally advanced breast cancer (T3/T4 and/or N2 tumors) treated with doxorubicin monotherapy before surgery followed by adjuvant tamoxifen in the case of positive ER and/or progesterone receptor (PgR) status (15). All but three patients were treated with tamoxifen. ER and PgR status was determined by using ligand-binding assays, and mutation analysis of the TP53 gene was performed as described (15). All common polymorphisms were recorded, but are considered wild type in this study. A detailed list of all samples and clinical data for the patients is included in Table 1, which is published as supporting information on the PNAS web site, www.pnas.org.

y Anatysts. Total RNA was isolated by phenoltm extraction (Trizol, GIBCO/BRL), and mRNA was by either magnetic separation using Dynabeads (Dype Invitrogen FastTrack 2.0 Kit. All experiments and the production of microarrays were performed as described (14), with detailed protocols available at http://cmgm.

Abbraviations: ER, estrogen receptor: SAM, significance analysis of microarrays. *T.S. and C.M.P. contributed equally to this work.

"To whom reprint requests should be addressed. E-mail: alb@labined.ulo.no.


The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hareby marked "advertisement" in accordance with 18 U.S.C §1734 solely to indicate this fact.

PNAS | September 11, 2001 | vol. 98 | no. 19 | 10869-10874

Perou et al. Nature 2000 Sørlie et al. PNAS 2001

Molecular subtypes by gene expression

- 561 genes selected as most "intrinsic" for individual tumors before and after treatment
- Clustering of other sets of tumors by the expression of these genes group them into five main groups
- Luminal A, Luminal B, HER2-enriched, Basallike and Normal-like.

Sørlie et al. PNAS 2001

Pathway differences - phenotypes

- Some pathways vary between subtypes
- Some pathways vary within subtypes

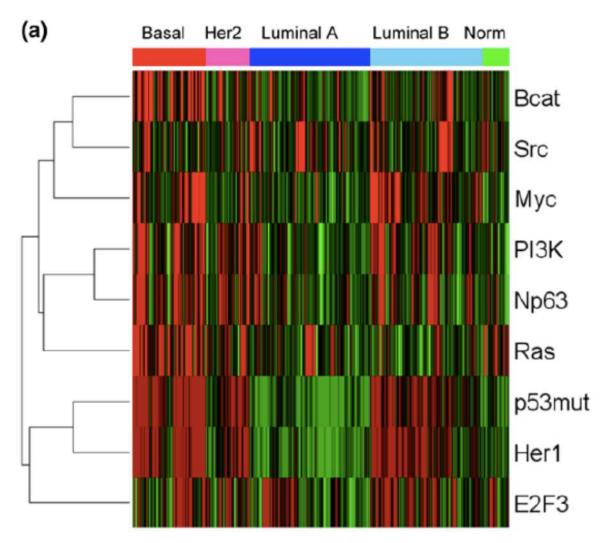


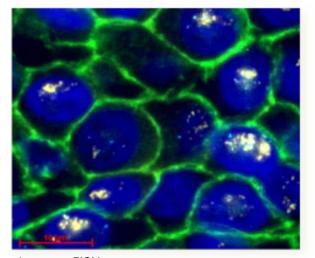
Bild et al., Breast Cancer Res 2009

Luminal breast cancer

Luminal A characteristics:

- ~60% of breast cancers
- ER and PR positive
- Tend to have low proliferation level
- Do not overexpress HER2
- Includes ER positive special type cancers (tubular, mucinous)
- High expression of hormone receptors and associated genes
- Respond to endocrine therapy
- Good prognosis, a large subset are cured by surgery alone (of post menopausal patients) Luminal B characteristics:
- ~10% of breast cancers
- ER positive but can be PgR low
- High proliferation level
- Respond to endocrine therapy and chemotherapy
- Adverse prognosis if not treated appropriately

HER2-enriched and basal-like breast


cancer

HER2- enriched

- Can be either ER+ or ER-
- HER2 pathway active
- Can have gain of HER2 (low level or high level)
- High proliferating
- Can have extensive immune cell infiltration
- Can respond to chemotherapy
- Very slim prognosis until HER2 target therapy was introduced (Trastuzumab)
- Dual-blockage is promising (to avoid resistance, i.e. relapse)
- NB: a HER2 enriched tumor can be clinically HER2 negative...

Basal-like:

- ER-/PgR-/HER2-
- Frequently grade 3
- Solid growth
- High proliferation
- Can have extensive immune cell infiltration
- Can be positive for CK5/6, EGFR
- Can respond to chemotherapy

ImmunoFISH: Blue: DAPI (nuclear) Green: HER2 protein Yellow: HER2 gene probe Light blue: Cent 17 probe

St. Gallen consensus meeting 2015

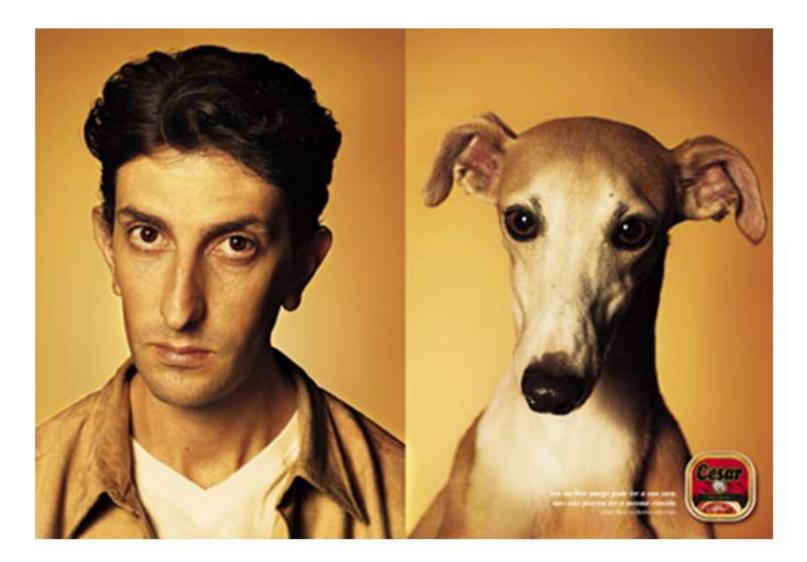
Clinical grouping	Notes
Triple-negative	Negative ER, PgR, and HER2
Hormone receptor-negative and HER2-positive	ASCO/CAP guidelines
Hormone receptor-positive and HER2-positive	ASCO/CAP guidelines
Hormone receptor-positive and HER2-negative luminal disease as a spectrum:	ER and/or PgR positive $\geq 1\%^a$
High receptor, low proliferation, low tumor burden (luminal A-like)	Multiparameter molecular marker 'favorable prognosis' if available. High ER/PgR and clearly low Ki-67 ^b . Low or absent nodal involvement (N 0–3), smaller T size (T1 T2).
Intermediate	Multiparameter molecular marker 'intermediate' if available ^c .
	Uncertainty persists about degree of risk and responsiveness to endocrine and cytotoxic therapies.
Low receptor, high proliferation, high tumor burden (luminal B-like)	Multiparameter molecular marker 'unfavorable prognosis' if available. Lower ER/PgR with clearly high Ki-67 ^b . More extensive nodal involvement, histological grade 3, extensive lymphovascular invasion, larger T size (T3).

^aER values between 1% and 9% were considered equivocal. Thus, endocrine therapy alone cannot be relied upon for patients with these values.
 ^bKi-67 scores should be interpreted in the light of local laboratory values: as an example, if a laboratory has a median Ki-67 score in receptor-positive disease of 20%, values of 30% or above could be considered clearly high; those of 10% or less clearly low.
 ^cNot all multiparameter molecular marker tests report an intermediate score.

St. Gallen consensus meeting 2015

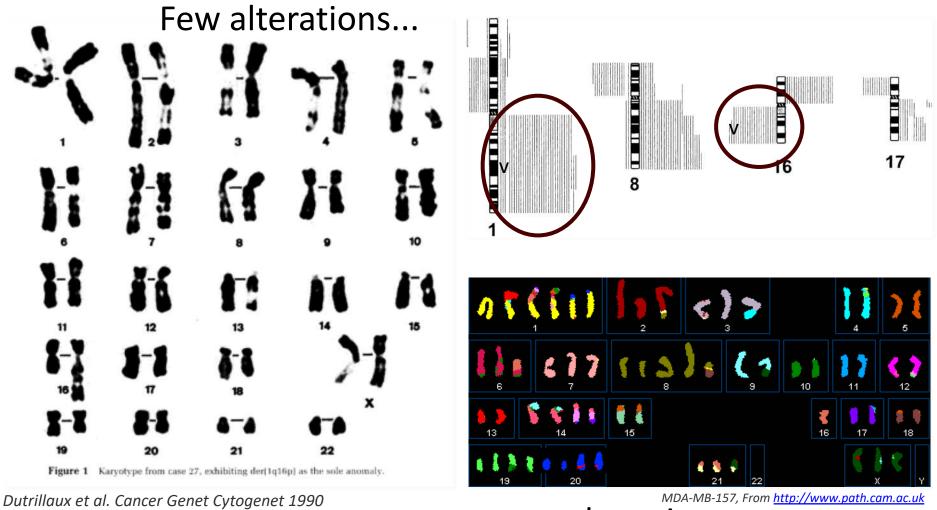
Clinical grouping	Notes			
Triple-negative	Negative EB gR, and HER2	"Basal-like"		
Hormone receptor-negative and HER2-positive	ASCO/CAP { uidelines	"HER2-enriched"		
Hormone receptor-positive and HER2-positive	ASCO/CAP į uidelines	"Luminal B/HER2-like"		
Hormone receptor-positive and HER2-negative luminal disease as a spectrum: High receptor, low proliferation, low tumor	ER and/or P _ξ R positive ≥1% ^a Multiparame er molecular marke	"Luminal A-like" rr 'favorable prognosis' if available. High ER/PgR and		
burden (luminal A like)				
Still IHC phenotypes for diagnosis – but luminal disease in need of more				
Low receptor, high proliferation, high tumor burden (luminal B-like)		r 'ur "Luminal B-like" Lower ER/PgR extensive nodal involvement, histological grade 3, sion, larger T size (T3).		

^aER values between 1% and 9% were considered equivocal. Thus, endocrine therapy alone cannot be relied upon for patients with these values.
 ^bKi-67 scores should be interpreted in the light of local laboratory values: as an example, if a laboratory has a median Ki-67 score in receptor-positive disease of 20%, values of 30% or above could be considered clearly high; those of 10% or less clearly low.
 ^cNot all multiparameter molecular marker tests report an intermediate score.

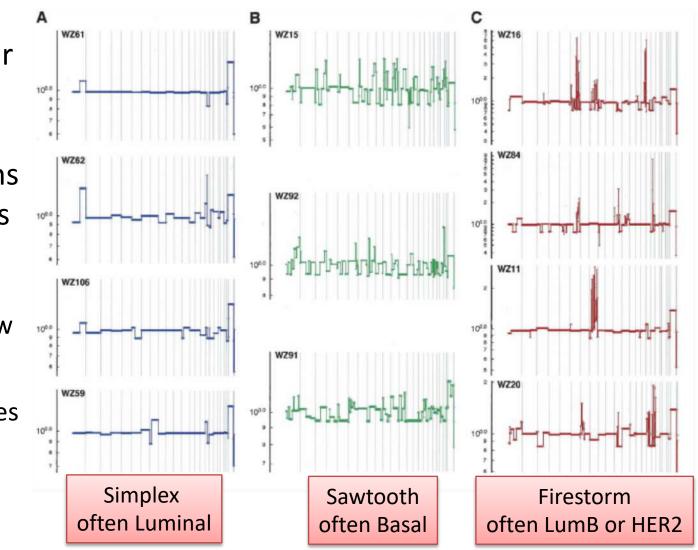

Molecular based classification

- Biomarkers/signatures for treatment prediction?
- Biomarkers/signatures recognizing biological distinct traits?
- Genomic transcriptomic metabolomic proteomic features?
- Integrated approaches?
- Are they recapitulating already established classes...?
- What is the clinical implication?
- And are the designated class the same throughout the entire evolution of a given tumor?

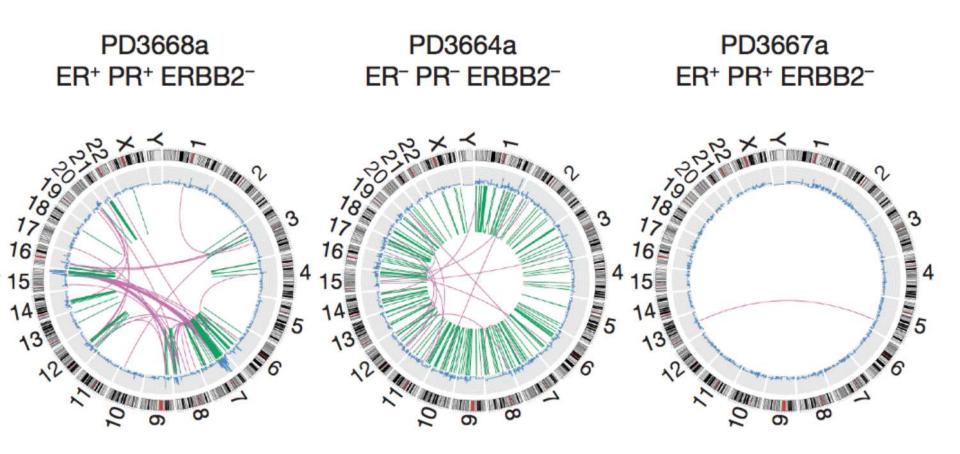
Similarities in phenotype....



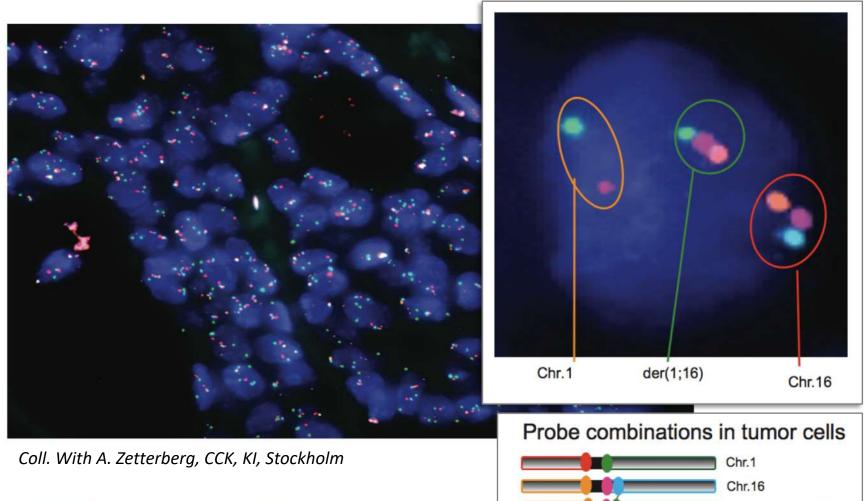
...but different genotype!


DNA Translocations and copy number changes

...many alterations


Patterns of genomic rearrangements

- Breast cancer genomes show three main patterns of alterations
 - simplex
 - complex/saw tooth
 - complex/fires torm



Hicks et al. Genome Res 2006

Sequenced breast cancer genomes - structural rearrangements

Centromere close translocations; gain and losses of whole chromosome arms

Rye et al, Genes Chrom Cancer 2015

der(1;16)(10q;10p)

Class discovery by integrating DNA alterations and gene expression data

Different genomic drivers across ER+ breast cancer

Clust

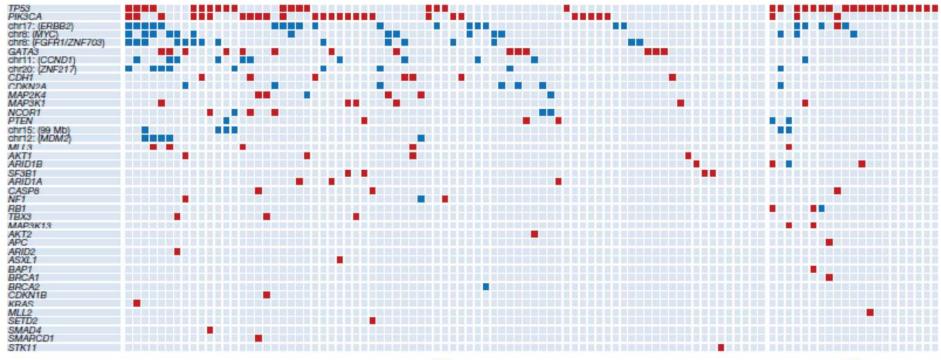

Intogrativo

Table 1 Overview of the Integrative Cluster Subtypes and the Dominating Properties with Regard to Copy Number Driving Events, Biomarkers, Type of DNA Architecture,⁴⁶ Dominant PAM50 Subtype, and Clinical Outcome

cluster group	Copy number driver	Pathology biomarker class	DNA architecture	Dominant PAM50	Clinical characteristics (survival)
1	Chromosome 17/ chromosome 20	ER ⁺ (HER2 ⁺)	Simplex/firestorm (chromosome 17q)	Luminal B	Intermediate
2	Chromosome 11	ER ⁺	Firestorm (chromosome 11q)	Luminal A and B	Poor
3	Very few	ER ⁺	Simplex/flat	Luminal A	Good
4	Very few	ER ⁺ /ER ⁻	Sawtooth/flat	Luminal A (mixed)	Good (immune cells)
5	Chromosome 17 (<i>HER2</i> gene)	ER ⁻ (ER ⁺)/HER2 ⁺	Firestorm (chromosome 17q)	Luminal B and HER2	Extremely poor (in pre Herceptin cohorts)
6	8p deletion	ER ⁺	Simplex/firestorm (chromosome 8p/ chromosome 11q)	Luminal B	Intermediate
7	Chromosome 16	ER ⁺	Simplex (chromosome 8q/chromosome 16q)	Luminal A	Good
8	Chromosome 1, Chromosome 16	ER ⁺	Simplex (chromosome 1q/chromosome 16q)	Luminal A	Good
9	Chromosome 8/ Chromosome 20	ER^+ (ER^-)	Simplex/firestorm (chromosome 8q/ chromosome 20q)	Luminal B (mixed)	Intermediate
10	Chromosome 5, Chromosome 8, Chromosome 10, Chromosome 12	TNBC	Complex/sawtooth	Basal-like	Poor 5-year, good long-term if survival
ER. estroo	gen receptor; TNBC, triple-ne	gative breast carcinoma.		Russnes et al. Am	J Pathology, 2017
100 -		gative brease carentonia.			577
	2 3 4 5 6 7	8 9 10 11 12 13 14 15 16 17 18 19	20.22 X	Curtis	et al. Nature, 2012

Chromosome

PAM50 – IntClust – DNA architecture

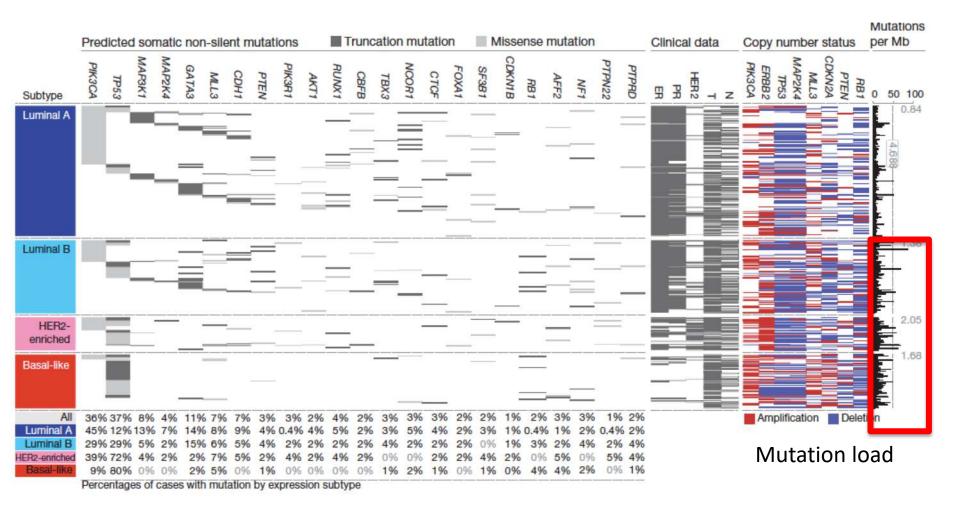


NB: centroid classification has five dimensions!

Russnes et al., Am J of Pathology, 2017

Mutations - "Personal" profiles?

100 breast cancer samples, 40 genes -> a total of 73 different combinations of mutated genes!



ER+

Stephens et al. Nature 2012

ER-

A specter of DNA mutations

Molecular based classification

- Biomarkers/signatures for treatment prediction?
- Biomarkers/signatures recognizing biological distinct traits?
- Genomic transcriptomic metabolomic proteomic features?
- Integrated approaches?
- Are they recapitulating already established classes...?
- What is the clinical implication?
- And are the designated class the same throughout the entire evolution of a given tumor?

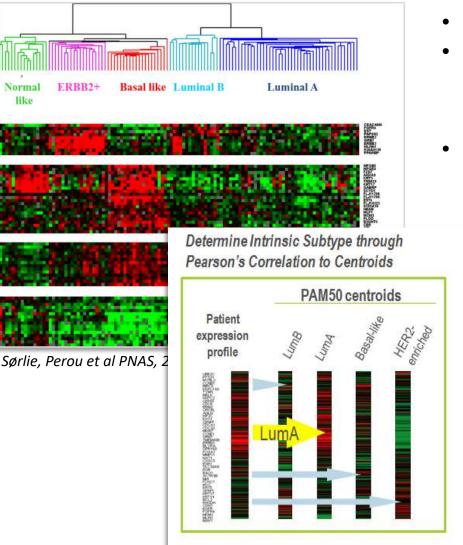
Yes – but clearly adding more! Luminal breast cancer

Clinical grouping	Notes					
Triple-negative	Negative ER, PgR, and HER2					
Hormone receptor-negative and HER2-positive	ASCO/CAP guidelines					
Hormone receptor-positive and HER2-positive	ASCO/CAP guidelines					
Hormone receptor-positive and HER2-negative luminal disease as a spectrum: "LumA	ER and/or PgR positive $\geq 1\%^{a}$					
High receptor, low proliferation, low tumor burden (luminal A-like)	Multiparameter molecular marker 'favorable prognosis' if available. High ER/PgR clearly low Ki-67 ^b . Low or absent nodal involvement (N 0–3), smaller T size (T					
Intermediate "intermediate group"	Multiparameter molecular marker 'intermediate' if available ^c . Uncertainty persists about degree of risk and responsiveness to endocrine and cytotoxic therapies.					
Low receptor, high proliferation, high tumor burden (luminal B-like)	-like" clearly high Ki-67 ^b . More extensive nodal involvement, histological grade 3, extensive lymphovascular invasion, larger T size (T3).					

^aER values between 1% and 9% were considered equivocal. Thus, endocrine therapy alone cannot be relied upon for patients with these values.
 ^bKi-67 scores should be interpreted in the light of local laboratory values: as an example, if a laboratory has a median Ki-67 score in receptor-positive disease of 20%, values of 30% or above could be considered clearly high; those of 10% or less clearly low.

^cNot all multi

Multiparameter molecular marker needed

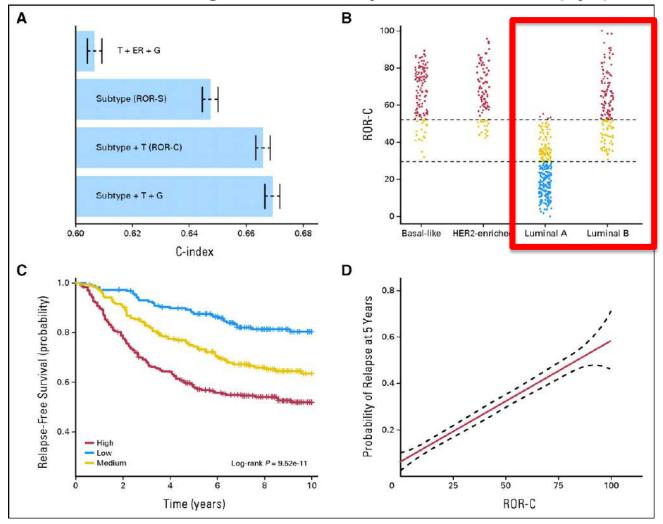

Coates et al, Ann Oncol 2015

Luminal disease is defined as a spectrum

Several validated <u>molecular multimarker</u> tests predict prognosis and/or therapy response:

- Oncotype Dx
- Mammaprint
- BCI
- IHC4
- Rotterdam signature
- Prosigna (PAM50 ROR)
- Endopredict
- Mammostrat
- MammaTyper
- ...but Ki-67 is easy and cheaper

From intrinsic subtypes to PAM50 to Prosigna



- PAM50: 5 subtypes (Parker et al. JCO 2009)
- Prosigna[™] Breast Cancer Prognostic Gene Signature Assay on the nCounter[®] Dx Analysis System (Nanostring)
 4 subtypes and ROR score
- Assignment of subclass by centroide correlation

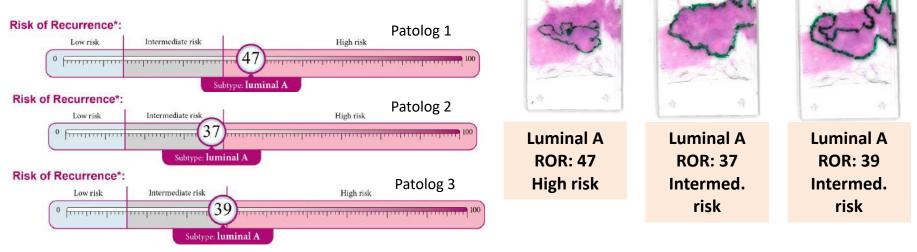
ROR = aR_{LumA} + bR_{LumB} + cR_{Her2e} +	Pearson's - correlation to centroids				
dR _{Basal} +					
eP+	Proliferation score				
fT	Tumor size				

Calculate Risk of Recurrence (ROR) Score

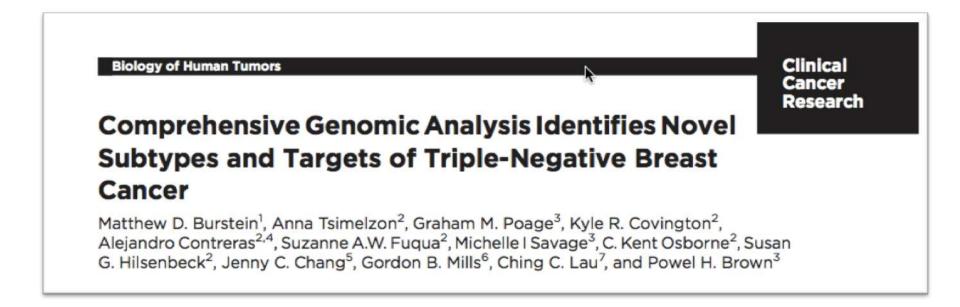
PAM50/Prosigna: Risk of relapse (ROR) predictions using a test set of node-negative, no systemic therapy patients.

Joel S. Parker et al. JCO 2009;27:1160-1167

NanoString nCounter Analysis System

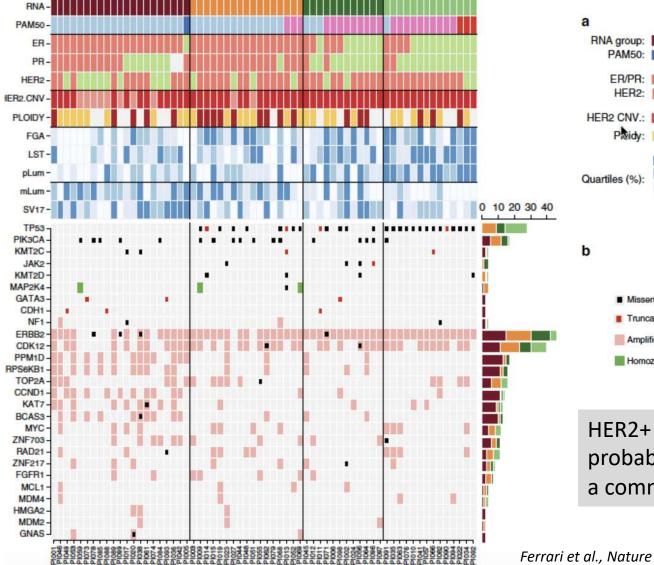

- Not PCR based suited for RNA from FFPE
- Can be run as both a research instrument and a diagnostic instrument (black box)
- Up to 800 genes (can do DNA and protein as well)

Challenge: regional intra tumor heterogeneity


Tumor area selection by three pathologists:

Prosigna score:

Morphology is of importance: the selection of area can determine use of adjuvant chemotherapy or not!


The diversity of Basal-like tumors

Molecular pathways enriched in the four groups

		Subtype 1 Luminal AR (LAR)		Subtype 2 Mesenchymal (MES)		Subtype 3 Basal-like immune suppressed (BLIS)			Subtype 4 Basal-like immune activated (BLIA)			
Ingenuity canonical pathway	Disc	Val	Ext	Disc	Val	Ext	Disc	Val	Ext	Disc	Val	Ext
Prolactin signalir	2	r	-		1		<u> </u>	1	<u> </u>			
Aryl hydrocarbon receptor signalin										-		
ErbB4 signalir												
Estrogen-mediated S-phase ent												
Xenobiotic metabolism signalin								1				
Cell cycle: G ₂ -M DNA damage checkpoint regulation												
Coagulation syste	m											
ATM signalin	9											
Hereditary breast cancer signalin												
Mitotic roles of Polo-like kinas	28											
Cell-cycle control of chromosomal replication												
Mismatch repair in eukaryote												
DNA damage-induced 14-3-3 sigma signalin	-	-		-	_	_	_	_		_		
Complement syste		<u> </u>	-	_	-	-	_			<u> </u>	-	
Extrinsic prothrombin activation pathwa	iy	-			-	-	-	-				
Hepatic fibrosis / hepatic stellate cell activatio		<u> </u>	-				<u> </u>		-		-	
Natural killer cell signalir Calcium-induced T lymphocyte apoptos		-	-			-	-	-	-	-	_	
Type I diabetes mellitus signalir		-	-	<u> </u>	<u> </u>	-	-	-				
Cytotoxic T lymphocyte-mediated apoptosis of target cel		-	-	<u> </u>	-	-						
B-cell developme		<u> </u>		<u> </u>	<u> </u>							
Tumoricidal function of hepatic natural killer cel		-		-	-							
Antigen presentation pathwa		1		-	<u> </u>	-						
Leukocyte extravasation signalin												
Cdc42 signalir												
Allograft rejection signalin												
Altered T-cell and B-cell signaling in rheumatoid arthrit												
Autoimmune thyroid disease signalin												
T-Helper cell differentiation	m						1					
Graft-versus-host disease signalin												
Nur77 signaling in T lymphocyte												
OX40 signaling pathwa	iy											
iCOS-iCOSL signaling in T helper cel	ls											
NF-xB activation by viruse		-	-		_			-	-		_	
Apoptosis signalir				-				-				
Tec kinase signalir	9		-	_								
CCR5 signaling in macrophage			-		-		-					
Production of nitric oxide and reactive oxygen species in macrophage					-	-	-		-	_	-	_
IL15 signalir Rele of extern reception receptors is reception of bacteria and view		-	-									
Role of pattern recognition receptors in recognition of bacteria and virus	18							-		-		

The diversity of HER2+ tumors

HER2: 3+ 2+ / FISH+ HER2 CNV.: Gained Amplified Plaidy: 2 NA [75, 100] [50, 75] Quartiles (%): [25, 50] [0,25] Missense mutation Truncating mutation Amplification Homozygous deletion

LumB

Neg

NA

D

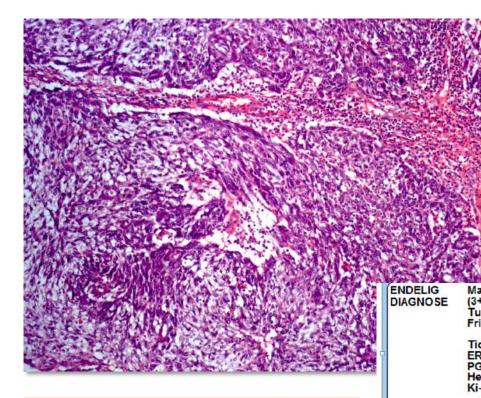
Basal

HER2+ tumors probably do not have a common etiology

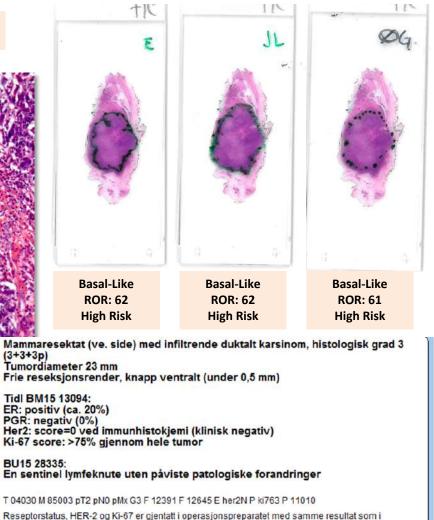
Ferrari et al., Nature Comm. 2016

PAM50:

ER/PR:


Pos

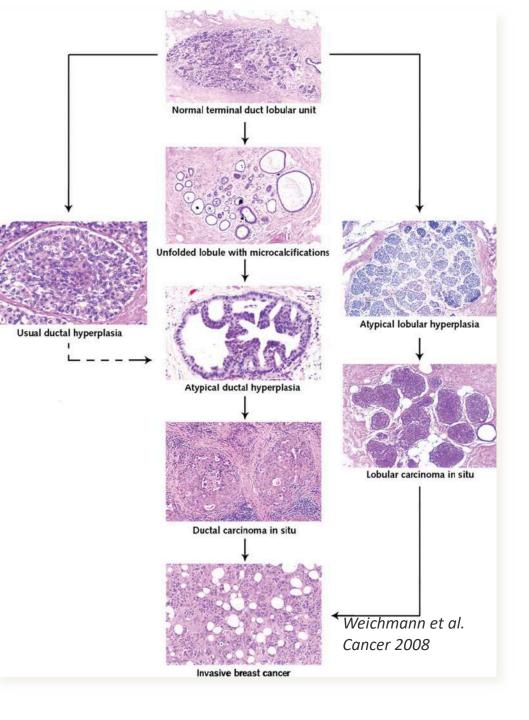
Diagnostic challenge: ER status by molecular multimarker test


SNOMED

Vurdering

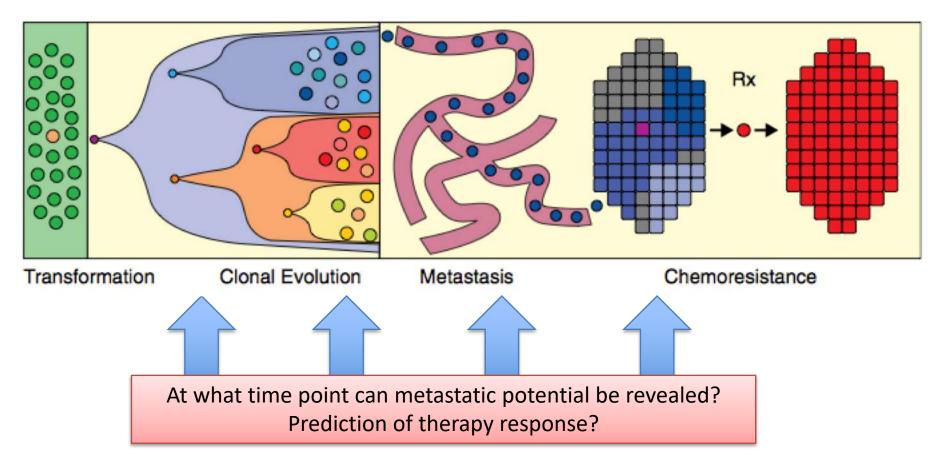
Tumor area selection by three pathologists:

NB: Not ER+ by gene PAM50, and medullary BC is most frequently ER-

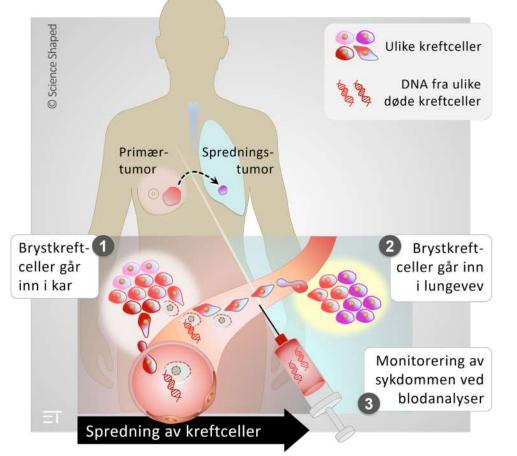


grovnålsbiopsi. Tumor har morfologisk visse medullære trekk.

Molecular based classification


- Biomarkers/signatures for treatment prediction?
- Biomarkers/signatures recognizing biological distinct traits?
- Genomic transcriptomic metabolomic proteomic features?
- Integrated approaches?
- Are they recapitulating already established classes...?
- What is the clinical implication?
- And are the designated class the same throughout the entire evolution of a given tumor?

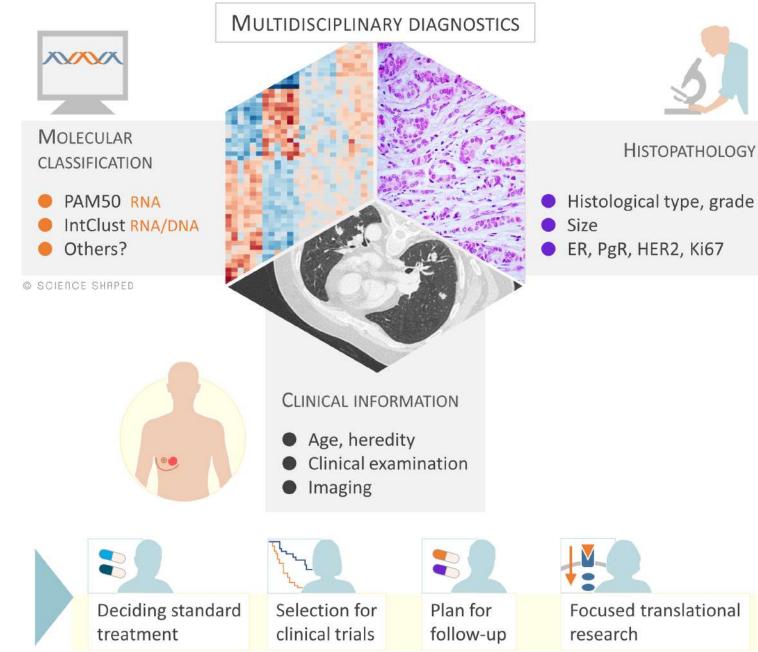
Pre-invasive disease: Many different histological appearances with uncertain relationship...


Heterogeneity and evolution - disease progression

Navin, Genome Biol 2014

Liquid biopsies

Development and standardization of protocols and assays for cell-free tumor DNA detection in peripheral blood



- Promising for monitoring neo-adjuvant treatment
- Promising in metastatic setting
- But need many markers or NGS based tests
- NB: value of circulating cells (CTC) or disseminated cells (DTC) needs to be considered

Molecular classification of breast cancer

2019, ASCO Educational book:

	Hereditary Cancer Risk	Tumor Gene-Expression Signatures	Tumor Genomic Mutations				
Assay	Germline DNA test	Tumor RNA-expression assay	Tumor (or circulating tumor or cell-free) DNA for genomic profiling				
Number of Genes Measured	Varies by assay; typically 2 to 40.	Varies by assay; typically 10-100	Varies by assay; typically > 400				
Assay Readout	Mutations in germline DNA	Patterns of gene expression often weighted with proprietary score	Mutations, deletions, amplifications in tumor DNA				
Clinical Role	Defining hereditary cancer syndromes (e.g., BRCA1/2); identifying patients for selected therapy in metastatic breast cancer with PARP inhibitors or platinum analogs	Prognostic markers for outcome in ER+ breast cancer; predicting benefit from adjuvant chemotherapy in ER+ breast cancer	 Identifying mutations for targeted therapy in metastatic breast cancer, including dynamic evolution of mutations associated wit treatment resistance; potential surrogate for cancer burden in setting of metastatic disease 				
All patients with metastatic breast cancer; patients with early-stage breast cancer with family history or other clinical features associated with hereditary cancer syndromes		Women with early-stage ER+ breast cancer, typically stage 1 or 2, for deciding whether to recommend adjuvant chemotherapy in addition to endocrine therapy	Selection of endocrine/targeted treatments in advanced FR+ breast cancer based on PIK3CA or ESR1 mutations; experimental for other precision medicine purposes				

Russnes et al., Am J of Pathology, 2017

Tusen takk!

